Quick Guide to Complex Numbers

For Ryan Holben's Math 3D class, Winter 2015 at UC Irvine, last updated January $15^{\text {th }}, 2015$.

0.1 Basic definition

First we define the imaginary unit

$$
i=\sqrt{-1}
$$

The number i has several useful properties that you can derive, including:

$$
i^{2}=-1 \text { and } \frac{1}{i}=-i
$$

Imaginary numbers are numbers of the form $b i$, where $b \in \mathbb{R}$. Next, we can define complex numbers, which are numbers of the form

$$
z=a+b i
$$

where $a, b \in \mathbb{R}$. The shorthand way of saying " z is a complex number" is to simply write $z \in \mathbb{C}$. We can break a complex number $z=a+b i$ down into its components. The real part of z is $\operatorname{Re}(z)=\operatorname{Re}(a+b i)=a$, and the imaginary part of z is $\operatorname{Im}(z)=\operatorname{Im}(a+b i)=b$.

Note that another way of representing complex numbers is with vectors (a, b) in the complex plane, where the horizontal axis corresponds to real numbers, and the vertical axis corresponds to imaginary numbers.

0.1.1 Example: Finding complex roots

At the most basic level, complex numbers are useful because they allow us to find roots for all polynomials. For example, if

$$
z^{2}+4=0
$$

then we can solve for two roots:

$$
\begin{gathered}
z^{2}=-4 \\
z= \pm \sqrt{-4}= \pm \sqrt{-1 \cdot 4}= \pm \sqrt{4} \sqrt{-1}= \pm 2 i
\end{gathered}
$$

0.1.2 Example: Fractions

We usually prefer to write complex numbers in the form $a+b i$. What if we have a fraction? For example:

$$
\frac{1}{2+3 i}
$$

Then we rationalize it:

$$
\begin{aligned}
\frac{1}{2+3 i} & \cdot \frac{2-3 i}{2-3 i}=\frac{2-3 i}{(2+3 i)(2-3 i)} \\
& =\frac{2-3 i}{4-9 i^{2}}=\frac{2-3 i}{4+9} \\
& =\frac{2-3 i}{13}=\frac{2}{13}-\frac{3}{13} i
\end{aligned}
$$

0.2 Euler's formula

Euler's formula relates complex exponentials to sine and cosine:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

This identity can be proved using Taylor series, and it is very important. As a side note, from this formula you can see that $e^{i \pi}=-1$, a widely popularized formula which you may have seen before.

Euler's formula lets us define sine and cosine in terms of complex exponentials:

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \text { and } \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2}
$$

